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Abstract

The study of insect behavior from video sequences poses many challenges. Despite the advances in image
processing techniques, the current generation of insect tracking tools is only effective in controlled lab
environments and under ideal lighting conditions. Very few tools are capable of tracking insects in outdoor
environments where the insects normally operate. Furthermore, the majority of tools focus on the first stage of the
analysis workflow, namely the acquisition of movement trajectories from video sequences. Far less effort has gone
into developing specialized techniques to characterize insect movement patterns once acquired from videos. In this
paper, we present a human-computer collaborative workflow for the acquisition and analysis of insect behavior
from field-recorded videos. We employ a human-guided video processing method to identify and track insects
from noisy videos with dynamic lighting conditions and unpredictable visual scenes, improving tracking precision
by 20% to 44% compared to traditional automated methods. The workflow also incorporates a novel visualization
tool for the large-scale exploratory analysis of insect trajectories. We also provide a number of quantitative methods
for statistical hypothesis testing. Together, the various components of the workflow provide end-to-end quantitative
and qualitative methods for the study of insect behavior from field-recorded videos. We demonstrate the
effectiveness of the proposed workflow with a field study on the navigational strategies of Kenyan seed harvester
ants.
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1. Introduction
Characterizing and understanding insect movement pat-
terns is a challenging endeavor. Due to the stochastic
nature of insect motion, researchers often need to
analyze large trajectory datasets that capture their move-
ment under diverse conditions to accurately interpret
their behavior. Automated image processing techniques
have therefore become very popular among entomolo-
gists and behavioral ecologists as a way of quickly ac-
quiring large datasets of insect trajectories from video.
Nevertheless, extracting and quantifying the behavior of
the focal insects with sufficient accuracy remains diffi-
cult due to the limitations of current image processing
techniques. Consequently, in the vast majority of studies,
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researchers perform their experiments in controlled in-
door labs and under ideal lighting conditions to reduce
noise and improve tracking accuracy. Lab-based experi-
ments, however, may radically alter the landscape and
stimuli that insects normally encounter in their native
habitat, casting doubts on the ecological validity of such
experiments. Furthermore, many environmental vari-
ables are extremely difficult to replicate in the lab. For
example, studies involving insect navigation often have
to be carried out in the field, as the natural landscape
plays a crucial role in providing navigational cues to in-
sects. Yet, very few techniques have been proposed to
acquire and quantify insect motion patterns in natural
settings, with the exception of tracking honeybees in
hives. To our knowledge, no robust techniques have
been proposed to acquire the movement of terrestrial in-
sects in the field.
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In this paper, we present a workflowa for acquiring
and analyzing the movement patterns of terrestrial in-
sects (e.g., ants) from field-recorded videos. Rather than
providing a fully automated solution, we adopt a
human-computer collaborative analysis paradigm where
a human analyst and a computer work together to ac-
curately complete the task; the computer provides semi-
automated processing of video sequences to visually seg-
ment and track the insects, while the human analyst
provides judgment, interpretation of behavior, as well as
corrective intervention in ambiguous situations to im-
prove tracking precision. We also address the problem
of making sense of insect behavior by providing post-
acquisition qualitative and quantitative analysis methods.
In summary, we contribute three analytical components
that are integrated to provide an end-to-end workflow
for the study of insect behavior from video sequences:

1. A novel, human-guided image processing pipeline to
extract and track insects in outdoor field
environments with high levels of noise

2. A novel trajectory visualization tool for the
exploratory and qualitative analysis of insect
behavioral patterns

3. Quantitative analysis methods for statistical testing
of hypotheses and spatiotemporal movement
regularities in insect motion trajectories

The flexibility of the proposed workflow makes it
uniquely suited for field entomologists and experimental
ecologists; unlike existing tools, our image processing
pipeline does not presume long uninterrupted observa-
tional periods, making it suitable for behavioral assays
that require repeated active manipulation of the insects
and their surroundings in their natural habitat. In the
rest of this paper, we discuss the limitations of existing
techniques and show how our workflow addresses them
in Section 2. We present the individual components of
the workflow and describe how they are integrated in
Section 3. In Section 4 we illustrate the effectiveness of
the proposed workflow with a real-world use case in-
volving a field study of the navigational strategies of
Kenyan seed harvester and demonstrate the precision of
the proposed human-guided video analysis technique.
We discuss the current limitations of the workflow and
planned future research in Section 5 and conclude the
paper in Section 6.

2. Related work
The study of insect behavior relies largely on behavioral
assays. The movement of individual insects can be ex-
tremely informative as to the nature of navigational
strategies and decision making processes (reviewed in
[1-3]). However, many previous studies have been
somewhat limited in their scope due to the lack of
workflows for collecting, processing, and analyzing tra-
jectories in the field. The observational methods that
ecologists and biologists use to collect data have con-
straints on the resolution of trajectory information that
can be collected in field experiments; even recent studies
primarily rely only on the measured orientations of mov-
ing insects rather than exploiting full trajectories (e.g.,
[3-5]). It has long been recognized that the distribution
of orientations and turning angles making up an insect’s
trajectory promises to contain much more information
about the behavioral rules governing navigation (e.g.,
[6]). Such detailed information has traditionally been
collected by hand (e.g., [7]) or by moving cameras in
order to keep the focal insect at the center of the view-
finder and then inferring position from the tilt and azi-
muth angles (reviewed in [8]) - both relatively time-
consuming methods. The lack of computational tech-
niques that allow accurate acquisition and analysis of in-
sect trajectories in the field has largely impeded the
research on many interesting problems in behavioral
entomology.
There is a wealth of image analysis methods for track-

ing insects in videos recorded under highly controlled
conditions. For instance, Balch et al. described an algo-
rithm to track ants in special containers with ideal light-
ing conditions [9]. SwisTrack is another widely used tool
for tracking insects and small robots [10]. Its modular
architecture allows for configurable image processing
pipelines that can be built from basic components (e.g.,
background subtraction, blob detection, particle track-
ing). Beetrack is a similar software tool with a more ad-
vanced toolset for the analysis of honeybees’ locomotion
[11]. While the aforementioned tools provide fully auto-
mated insect tracking, they require controlled environ-
ments along with a predetermined set of parameters,
making them unsuitable for outdoor field studies where
the lighting conditions are constantly changing and the
visual field is susceptible to frequent intrusion from
other insects. To the best of our knowledge, no one has
successfully used any of them to track insects in their
native habitat.
Statistically inspired approaches have been developed

in an attempt to overcome the limitations of traditional
image processing pipelines. Khan et al. developed an ef-
fective particle tracking system using Markov chain
Monte Carlo [12]. Their method is capable of tracking
interacting agents demonstrating good results when used
to track ants in the lab. Kimura et al. described a novel
technique based on vector quantization to track large
numbers of densely packed honeybees in hives [13].
Despite their attractiveness, automated image process-

ing methods are susceptible to many sources of error
which have the potential to significantly degrade the
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accuracy of the extracted trajectories. Collaborative
human-computer approaches have been proposed to im-
prove accuracy in situations that are difficult to resolve
by the computer alone [14]. For example, DeCamp and
Roy relied on a human operator to annotate
preprocessed video segments to track human activities
in indoor spaces [15]. Li et al. employed a fully auto-
mated image processing algorithm to track migrating
cells and later relied on a human operator to correct er-
rors in trajectories [16]. Voss and Zeil described a tech-
nique to extract the three-dimensional (3D) motion of
flying insects under natural light conditions, requesting
human intervention in ambiguous situations [17]. We
also employ a human-computer collaboration paradigm
relying on a human operator to tag the initial location of
the focal insect and letting the computer perform auto-
matic image processing and tracking where possible and
asking for human input when ambiguities occur.
Once insects are recognized and their motion tracked

and recorded in the form of individual trajectories, the
next task is to analyze those trajectories to discover and
characterize consistent behavioral patterns the insects
exhibit. Many automated techniques have been proposed
to quantitatively analyze the motion of insects and ani-
mals. For instance, a data-driven Markov chain Monte
Carlo has been employed to infer temporal patterns in
the motion of bees [18]. The k-means clustering of
movement-based feature vectors has been used to
recognize distinct behavioral patterns exhibited by grass-
hoppers [19]. Time series analysis was used to recognize
distinct behavioral states in leeches [20]. However, to the
best of our knowledge, no techniques have been pro-
posed for exploratory, human-guided qualitative analysis
of insect motion aside from simple observations with
the naked eye. This is important as exploratory analysis
has the potential to reveal behavioral patterns that may
be difficult to recognize and interpret from statistical
data alone [21]. We address this gap in the literature by
providing a novel interactive visualization tool to explore
and visually analyze large collections of insect trajector-
ies. Once qualitative patterns are detected, they can be
quantitatively tested for statistical significance in the
final stage of the workflow.
In summary, previous works on acquiring and analyz-

ing insect movement have mostly focused on automatic,
passive observations of insect collectives in highly con-
trolled environments and under ideal lighting condi-
tions. Yet, in many cases, the focal behavior is largely
dependent on the natural habitat of the insect and thus
can only be studied in the field. Moreover, field entomol-
ogists often need to actively and repeatedly manipulate
the insects and their surrounding environment in order
to elicit responses for specific stimuli or situations. This
renders the majority of existing tools unsuitable as they
often assume long, uninterrupted observational periods.
The workflow we propose in this paper addresses these
issues and targets studies where researchers need to rec-
ord, extract, and analyze large collections of insect tra-
jectories under a variety of experimental conditions.
Furthermore, we also address the problem of actually
analyzing and making sense of those trajectories once
they are recorded. By integrating interactive visual ex-
ploration and statistical analysis of trajectory features,
our workflow supports both qualitative and quantitative
analyses.

3. Workflow
Field research poses unique challenges that are not nor-
mally encountered in the lab. The stringent time and
budgetary constraints combined with the remoteness of
many field sites place additional emphasis on the quality
and value of every experiment. Such experiments typic-
ally have to be performed manually - often with one in-
sect at a time - to isolate the relevant variables and to
accurately characterize the behavior at the individual
level. While efficient data acquisition is desirable, field
researchers often place a higher value on the reliability
and accuracy of the data, due to the considerably high
cost of field studies and the difficulty in replicating
them. Yet, compared to lab-based research, field experi-
ments are unpredictable in nature and suffer signifi-
cantly lower signal-to-noise ratios, making accurate
video analysis even more challenging. For example, the
lighting conditions are far more dynamic in the field and
the visual scene is susceptible to interference and intru-
sion from grasses, shadows, and even other insects or
animals.
The manual, high-cost, narrow-band nature of field

experiments combined with the increased level of noise
call for workflows that prioritize data accuracy and reso-
lution over throughput. Human-computer collaborative
systems provide a good compromise to address these
challenges [14]. In this paradigm, a human analyst and a
computer work collaboratively to complete the task; the
computer performs laborious tasks, such as detecting
and tracking insects in image sequences, while the hu-
man provides guidance and intervention in difficult and
ambiguous situations, such as noisy images that are diffi-
cult for the computer to resolve. Furthermore, a human-
computer collaborative workflow can potentially facili-
tate high-level qualitative analysis of the data by lever-
aging human judgment and interpretation. One could
envision an interactive system where a researcher con-
templates theories regarding a hypothesized or observed
behavior with the computer providing the means to
quickly query large collections of trajectories, enabling
the researcher to weigh the data against his/her hypoth-
eses in a visual and qualitative manner. When a number
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of promising hypotheses have been formulated, the com-
puter can test those hypotheses quantitatively by
performing computational and statistical tests on various
trajectory features.
Although human-computer collaborative workflows do

require increased involvement of researchers throughout
the analysis, we believe that this active involvement
translates to more accurate data acquisition as well as
improved understanding of the underlying insect behav-
ior. The key to building effective workflows is designing
interactive visual interfaces that allow researchers to ‘see’
the data, supply judgment and interpretation, and inter-
vene to correct errors and artifacts produced by the
computer.

3.1 Overview
Our workflow consists of four main stages, as illustrated
in Figure 1. The first stage comprises human-guided
video processing to segment insects, track them, and ex-
tract their trajectories. It comprises a tool that not only
implements common video processing pipelines but also
includes interactive features to allow a human to inter-
vene and correct errors, such as misidentification of the
target in the beginning of the recording. In the second
stage, the extracted trajectories are transformed
according to a camera model to cancel perspective ef-
fects. In the third stage, the corrected trajectories are ex-
plored using an interactive visualization tool for
exploratory and qualitative analysis. We employed a
number of novel features, including a 3D visualization to
enable researchers to discover recurring spatial and tem-
poral patterns, compare trajectories under different con-
ditions, and quickly test hypotheses pertaining to
observed behavior. Once a number of promising hypoth-
eses have been formulated, they can be statistically veri-
fied in the fourth stage. The last two stages of the
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Figure 1 A block diagram of the proposed workflow. The four stages c
acquire and make sense of insect behavior in field-recorded videos.
workflow comprise a ‘sense making loop’ where plausible
theories are first formulated and explored visually in a
qualitative manner and then statistically verified in the
following stage, which, in turn, may lead to new theories
and hypotheses that can be visually explored again. The
four stages comprise an end-to-end workflow, providing
the analytical tools needed to acquire insect trajectories
from field-recorded videos and make sense of these tra-
jectories. We describe each stage in detail in the follow-
ing subsections.

3.2 Human-guided video processing and insect tracking
Lighting conditions, shadows, moving debris, soil color,
and other encroaching insects and animals can adversely
affect the quality of data in field studies. For instance,
moving grasses may cast shadows, causing false positives
and interfering with tracking. To achieve accurate track-
ing, we employ an automated algorithm that performs
the bulk of the image processing and insect tracking
coupled with an interactive user interface that enables
the human operator to watch the algorithm's output
and intervene to rectify errors in the tracking. The
program takes control from the automated algorithm
and hands it to the operator to take action when
needed. Control is handed back to the algorithm when
the ambiguity is resolved. The operator may also initi-
ate corrective intervention when errors in the tracking
are observed. We first describe the video processing
pipeline, discuss the tracking algorithm, and then de-
scribe how a human operator can intervene to rectify
problems in tracking.

3.2.1 Video processing
The pipeline takes a video feed as an input, subtracts the
background, filters each frame for noise and artifacts,
and outputs the moving parts as binary blobs of pixels.
g
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Figure 2 A block diagram of the image processing pipeline.

Figure 3 Dilation and erosion. A series of dilation operations
cause the shadow to merge with the insect’s body, while a series of
erosions can remove small shadows as well as other smaller insects
or debris.
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Figure 2 illustrates this process. The following is a de-
scription of the individual steps:

� Background elimination. We employ the foreground
object detection algorithm described by Li et al. to
segment moving insects from the background scene
[22], giving us a binary image indicating the location
of insects in the frame. Ideally, this step would
completely eliminate the background leaving only
moving insects. In most cases, however, the visual
scene is simply too noisy, resulting in false-positive
blobs from debris, grasses, and shadows.

� Masking. The non-interesting parts of the image are
removed to ease the task of the tracking algorithm
and remove unwanted noise and artifacts. For
example, if the experimenter is using a marked
experimental arena to conduct the experiments, the
surroundings can be removed. The mask has to be
manually updated whenever the camera or subject
position changes.

� Noise filtering. The frame is processed to remove
unwanted noise and artifacts. We first apply a
Median Blur filter to remove ‘salt and pepper noise’
[23]. To further smooth, the video feed is blurred
using a 3 × 3 Gaussian kernel, after which the frame
is thresholded to obtain a binary image.

� Insect shadow elimination. Insects may cast
prominent shadows on the ground, which tend to
confuse the tracking algorithm and cause it to jump
back and forth between the insect and its shadow,
producing artifacts in the recorded trajectory. In
some situations, the shadow cast by an insect can be
larger than the insect itself. We employ a series of
dilation and erosion operations to eliminate the
insect’s shadow and/or merge it with its body
[24,25]. Eroding the image results in the elimination
of smaller shadows, while dilation causes the insect
and its shadow to merge into a single blob. Figure 3
illustrates the effect of dilation and erosion on an
insect blob and its shadow. Typically, a series of
erosions followed by a series of dilations are applied,
or vice versa. Because the size of the shadow often
depends on the time of the day and the actual size
of the insect, the appropriate sequence of dilation
and erosion operations must be determined
empirically.

3.2.2 Insect tracking
At the beginning of this stage, the binary frame returned
from the image processing pipeline is segmented using a
simple contour finding algorithm [26], and the centroid
of each detected blob is calculated. We employ a
human-computer collaborative tool to accurately track
the centroids of the focal insects; an automated algo-
rithm performs basic tracking with a human operator
supervising and intervening when there are tracking am-
biguities. This is necessary when, for instance, the frame
contains a significant level of noise as a result of quick



Reda et al. EURASIP Journal on Image and Video Processing 2013, 2013:48 Page 6 of 17
http://jivp.eurasipjournals.com/content/2013/1/48
changes in lighting conditions due to moving clouds or
because of relatively strong winds, which tend to shift
the camera. Figure 4 illustrates the steps involved in
tracking. We describe the steps below:

� Skipping to the beginning. In behavioral assays where
experiments are conducted in rapid succession, a
single video file may contain several experiments.
The human operator may need to indicate the
beginning and end of each independent experiment
by fast-forwarding the video to the starting position
of the experiment for instance. Additionally, some
non-relevant video segments may need to be
cropped (equipment or hands appearing in the
beginning of the experiment, for instance).

� Insect selection. When there are multiple prominent
blobs in the first video frame, the focal insects may
need to be identified manually in the first frame. In
this case, the automated algorithm stops, and
control is handed to the human operator to identify
the focal insects. The operator selects one or more
insects by clicking on them or fast-forwarding if no
insects are present. After the selection, the control is
handed back to the automated tracking algorithm.
Although user identification of individual insects is
not feasible when tracking a large number of insects,
manual selection is often necessary in behavioral
assays where the focal insects need to be accurately
identified and tracked for the data to make any
sense. In passive observation of large insect
collectives, a different mechanism needs to be
implemented to identify the initial position of
insects. A simple approach is to assume that all
blobs in the binary frame are potential insects.
Alternatively, a more sophisticated scheme, such as
pattern matching, could be employed.

� Insect tracking. A region of interest (ROI) is defined
as the circle around the current position of tracked
insects, with a radius that is three to four times the
size of the insect. The selection of the focal insect in
Field experiments Insect selection

Skip to 
beginning of 
experiment

Human intervention

Figure 4 A block diagram of the human-guided insect tracking pipeli
the previous step initializes the position of the ROI.
The automated algorithm then steps automatically
through the video frames, associating insect blobs
with their predecessor in previous frames. The
algorithm only considers blobs that are inside the
insect’s ROI. For each frame, one of the following
three situations may arise:
1. No blobs are detected inside the ROI. This case

happens if the insect stops moving for some time,
becoming part of the background model. Since
there is no movement, these frames are skipped.

2. Ideally, one blob would be present inside the
ROI. In this case, the centroid of the blob is
appended to the insect’s trajectory.

3. Two or more blobs detected inside the ROI. This is
when the human operator needs to intervene. In
this situation, using the mouse, the human operator
selects the blob that corresponds to the insect. This
situation can often be resolved automatically using
a nearest neighbor algorithm for instance. Here, we
opted to rely on human judgment to maximize the
accuracy of tracking. However, in more forgiving
situations, one could calculate a confidence level at
every frame and stop the automated tracking only
when the confidence level drops below a certain
threshold (e.g., when the last position of the insect
is equidistant to several blobs that are equally
probable).

� Trajectory correction. Once the trajectory is fully
processed (i.e., the insect exits the field of view or
the experiment is terminated), the human operator
may delete extraneous jumps by clicking on them.
The final trajectory is then saved to a file.

3.3 Camera modeling
Once trajectories are extracted, they are first corrected to
cancel perspective distortion. In the lab, the experimenter
can typically hang the cameras from the top - using a
mounting structure - to get top-down, orthogonal shots of
the insects, which reduces the amount of perspective
Insect tracking

Human intervention

Trajectory 
correction

Human intervention

Trajectory 
errors

ne.
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distortion. In the field, however, it is difficult to construct
such mounts. Therefore, researchers often resort to using
regular tripod mounts and positioning the camera on the
side of the subjects to avoid disrupting their behavior. This
side-top view produces a significant amount of perspective
distortion.
To correct perspective distortion, we use a simple

grid calibration procedure illustrated in Figure 5. The
borders of the experimental arena are marked with
regular control points every 10 cm (indicated with ar-
rows). The control points are identified and entered
manually by a user whenever the camera position
changes (typically once or twice a day). From these
control points, a regular grid is constructed from the
intersection of line segments defined by the control
points. The corner coordinates of each cell are calcu-
lated in both world space and pixel space by linear
interpolation along the control points. The cells are
then used to map trajectory points from pixel space
to world space using a bilinear interpolation. While
this transformation ignores lens distortions, in prac-
tice this distortion was minimal in our case. This
simple calibration technique works well in the field,
as it does not require any accurate measurements of
camera position or the availability of calibration-
aiding materials such as regular checkerboards, which
are difficult to obtain in remote locations. However,
more sophisticated calibration schemes that take into
account lens distortions can certainly be used if
needed (e.g., Tsai’s method [27]).
Figure 5 Grid calibration procedure. The calibration procedure requires
arrows) along the borders of the experimental region of interest. The inters
cells (e.g., yellow square). A bilinear mapping is used within corresponding
world space.
3.4 Visual exploration (qualitative analysis)
Once trajectories are extracted and corrected, re-
searchers can begin their attempt to understand and
characterize the underlying insect behavior. Often, the
first thing researchers want to do is to ‘take a look’ at
the collected trajectories to get an overall sense of the
behavior and to see if there are any obvious patterns. Al-
though entomologists tend to form their initial hypoth-
eses from field observations, it is beneficial to give them
a chance to explore and follow up on a wider range of
plausible theories before drawing conclusions. This is
particularly important in behavioral entomology where
the underlying insect behavior is highly probabilistic and
is susceptible to many different interpretations that are
often equally plausible. Therefore, at this stage of the
workflow, our goal is to give researchers a tool that en-
ables them to ‘think laterally’ and explore different hy-
potheses with ease before deciding on the most
promising ones for further statistical analysis. Supporting
this kind of exploratory qualitative analysis in scientific
workflows is crucial, yet often overlooked [21].
To facilitate exploratory analysis, we developed an

interactive visualization tool for the exploration of large
collections of insect trajectories. The visualization em-
ploys a small-multiple view [28] with multiple trajector-
ies visualized side-by-side in a grid layout, as illustrated
in Figure 6A. The trajectories can be grouped according
to their associated metadata, such as the location of cap-
ture, insect size, colony, etc. Although the movement of
terrestrial insects is naturally restricted to the ground
the user to manually specify premarked control points (indicated with
ection of lines passing through the control points creates calibration
cells to transform trajectory vertices from pixel space to a 2D plane in
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Figure 6 Visualization of trajectories in a grid layout and a single trajectory in stereoscopic 3D display. (A) Trajectories of seed harvester
ants juxtaposed in a grid layout. The trajectories can also be grouped according to the experimental condition under which they were collected.
In this example, the grid contains trajectories of ants captured east of the colony’s main foraging trail. A coordinated paintbrush tool (top right)
along with a temporal filter (top center) can be used to visually test hypotheses corresponding to spatiotemporal behavioral patterns exhibited in
the trajectories. (B) Each cell visualizes a single trajectory in stereoscopic 3D display to illustrate spatial and temporal features in the trajectory.
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(i.e., two-dimensional (2D) motion), we utilized a 3D vis-
ual encoding to better illustrate spatiotemporal move-
ment patterns in the data; each trajectory was rendered
in stereoscopic 3D display, with the XY plane (the dis-
play surface) encoding the insect's movement on the
ground, while the Z+ axis (away from display) encoded
time. To a viewer looking at a 3D display, the trajector-
ies appear as cylinders sprouting from the display sur-
face and extending out to ‘float’ in front of the display.
Figure 6B illustrates this concept. Traditional 2D
visualization can only depict insect movement, irrespect-
ive of the time it took the insect to make that move-
ment. A stereoscopic 3D visualization, on the other
hand, can reveal the temporality and periodicity of tra-
jectories, making it possible for researchers to perceive
complex, spatiotemporal behavioral patterns. Although
one can certainly encode time in a strictly 2D
visualization by using color for instance, we found that
stereoscopic depth cues are better at conveying temporal
patterns when one is looking at a large number of trajec-
tories simultaneously [29]. Previous studies also demon-
strated the value of stereoscopy in allowing one to
perceive and operate on larger datasets [30].
We included two interactive features to let re-

searchers query the data, explore hypotheses, and
quickly determine whether the data support those hy-
potheses. First, a coordinated paintbrush tool allows
the user to ‘brush’ the background of one trajectory,
causing a color highlight in all other displayed trajec-
tories when the insect moves over a brushed area.
Second, a temporal filter enables the user to specify a
time period (using a range slider), causing the
visualization to display trajectory segments corre-
sponding to insect movement during the specified
time period only, such as the beginning of the experi-
ment. Our experiments with the visualization demon-
strated that using these two features in tandem, a
researcher could test for a hypothesized spatiotempo-
ral behavioral pattern and visually determine whether
the data support that behavior [29].
To see how the visualization can be used for quick

qualitative hypothesis testing, let us consider the
following example. During the study on the naviga-
tional strategies of seed harvester ants (described in
Section 4), our field observations suggested that ants
were employing celestial cues, such as polarized sun-
light, for navigation off the colony's main foraging
trail where no reliable pheromone cues are present.
To test this hypothesis, the researcher visualized tra-
jectories of ants captured east of the main foraging
trail in one group and tried to determine whether
those ants exit the experimental arena from the west
side in an attempt to get back to the trail. Because of
the large number of samples (over 50 in our case),
this is not normally an easy task. However, the test
can be visually performed with ease using our
visualization; the researcher uses the coordinated
paintbrush tool to brush the left (west) part of one
trajectory from the ‘east’ group with red (top right of
Figure 6A) and set the temporal filter to show move-
ment during the last moments of the experiment.
One would expect a red highlight in the majority of
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Figure 7 Spatial (left) and temporal (right) discretization of a
seed harvester ant trajectory. The red dots indicate the end
points of the straight segments produced by the above algorithms.
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cells if the ants exit from the left side, which is in-
deed the case here. While this qualitative assessment
does not, by itself, constitute formal verification, it
can be used to contemplate and explore a wide range
of hypotheses. Once a number of plausible hypotheses
have been identified, they can be statistically verified
in the following stage of workflow.

3.5 Quantitative analysis
After the data have been explored visually, the next
course of action is to quantify any observed behavior
and to statistically test the hypotheses that were formu-
lated earlier. The quantitative analysis stage of the work-
flow comprises two steps:

1. Quantitative trajectory description. Trajectories
are first discretized at regular intervals, in both
space and time. Following that, various statistical
and geometric measures are calculated from the
discretized segments, including distribution of
turning angles and mean orientation vectors.
These measurements quantitatively characterize
insect motion and allow researchers to establish
quantitative differences between groups of
trajectories captured under different conditions.

2. Statistical hypothesis testing. This usually entails
comparing groups of trajectories based on the
measures calculated in the above step. Statistical
tests such as Wilcoxon and generalized linear
model (GLM) are common here.

While the appropriate statistical test is largely
dependent on the question being asked, there are a num-
ber of general statistical measures that can be used to
quantitatively characterize the movement of terrestrial in-
sects. Moreover, these measures can shed light on the
strategies insects employ to process stimuli and navigate
the environment around them. Although not meant as an
exhaustive list of measures, here we discuss statistical and
geometric trajectory measures that are widely used in the
analysis of insect movement. We first discuss trajectory
discretization and then describe two common statistical
measures for trajectories.

3.5.1 Trajectory discretization
Since the motion of insects is highly stochastic in na-
ture, it is convenient to chop their trajectories into
regular segments and analyze those segments differen-
tially. This is often necessary to get a statistically rep-
resentative sample of the insect’s motion and decision
making process. Although trajectories extracted from
image sequences are often recorded as a series of
discrete points, such initial discretization is usually ir-
regular or fixed at an arbitrary interval (the video’s
frame rate). One should therefore resample the trajec-
tories at biologically meaningful distances and inter-
vals. The choice of segment length is subject to a
trade-off between incorporating too much noise by
using a small segment length and sacrificing reso-
lution by taking too large a segment length. Ultim-
ately, that choice depends on the questions being
asked and the phenotypic behavior of the insect.
Common values range between few millimeters to few
centimeters for space discretization and few hundred
milliseconds to few seconds for time discretization.
Here we consider two discretization schemes that are

common in animal movement studies, namely spatial and
temporal discretization (Chapter 7 in [31]). We note, how-
ever, that other criteria such as curvature and sinuosity
may also be appropriate [32]. In space discretization, the
trajectory is chopped into straight segments of equal
length, irrespective of the time the insect took to travel be-
tween those points. In time discretization, on the other
hand, the end points of each segment represent insect dis-
placement during a predetermined time period, irrespect-
ive of the magnitude of that displacement. Figure 7
illustrates the difference between the two techniques by
showing the same ant trajectory discretized in both space
and time (at 4 cm and 0.5 s, respectively). Algorithms 1
and 2 can be used for space and time discretization,
respectively.
3.5.2 Distribution of turning angles
The distribution of turning angles can be obtained by
measuring the angle between two consecutive seg-
ments along the discretized trajectory. Binning these
angles gives us a distribution that shows the tendency
of the insect to make turns. Figure 8A illustrates this.
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Generally speaking, a wider distribution of turning
angles indicate a more tortuous path comprising
many turns, whereas a narrower distribution usually
corresponds to more directed movement.
3.5.3 Distribution of orientations
This can be calculated by determining the normalized
orientation vector of the insect at every segment
throughout the trajectory. Figure 8B illustrates this.



Distribution of turning angles Distribution of orientations

0 60-60 120-120

Frequency

50%

100%

Mean orie
ntatio

n

ve
cto

r

A B
Figure 8 Distribution of turning angles and orientations. (A) Illustration of how to calculate the distribution of turning angles, and (B)
distribution of orientations as well as mean orientation vector from discretized trajectories.
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Orientation vectors can be averaged to calculate a mean
orientation vector, which gives the overall direction of
the insect’s motion. The magnitude of the mean orienta-
tion vector indicates the directedness of an insect’s path.
A mean value close to 1.0 implies that the insect is trav-
eling in a particular direction, whereas a magnitude
close to 0 typically indicates a non-directed motion, such
as a loop or spiral.

4. Case study: context-dependent navigation in
social foraging ants
The best way to evaluate scientific workflows is to see
how they fare in the hands of scientists when analyzing
real data. We put the proposed workflow to test during a
field investigation on the navigational strategies of seed
harvester ants (Messor cephalotes). The interdisciplinary
research project was carried out in 2012 at the Mpala Re-
search Centre located in the Laikipia district of Kenya. We
first give background on the project and then describe
how we employed the proposed workflow throughout the
various stages of the investigation. We also give quantita-
tive results on the accuracy of our human-computer col-
laborative video processing approach and compare it
against a fully automated solution.

4.1 Background
One key role for navigation in social insects is in the
orientation of workers between food sources and the
nest. Foraging efficiency, often cited as a key factor in
the ecological success of social insects, is largely
dependent on the accuracy and speed with which indi-
viduals can move between these locations. Seed har-
vester ants live in large colonies of many thousands of
individuals and create enormous, persistent networks of
trails to guide foragers to food sources up to 40 m from
the nest. Many ants leave these trails to search for seeds
individually [33]. On finding a seed, foragers return to
the trail network and then follow the main trail back to
the nest. Thus, a harvester ant’s outward and inward
journeys are each split into two segments - an on-trail
segment and an off-trail segment. This two-part journey
presents an interesting navigational challenge, as for-
agers do not home directly from their current location
after finding food, but retrace their routes back to the
point at which they left the trail network, and only then
reorient towards the nest. Because the visual and chem-
ical information available to a forager on the main trail
will differ considerably from that available to a forager
searching some distance from the trail, there is the po-
tential for context-specific selection of navigational
strategies.
Our goal was to understand and characterize the dif-

ference between these two modes of navigation, namely
off-trail versus on-trail navigation, employed by seed
harvester ants [34]. As this investigation required access
to several fully developed ant colonies with established



Behavioral experiment

Trail observations
Figure 9 Screen-grabs from a behavioral experiment (top) and
a trail observation video segment (bottom).

Table 1 OpenCV functions used in the image processing
pipeline

Pipeline stage Function name

Background elimination cvCreateGaussianBGModel

Parameters: win_size = 40; n_gauss = 5;
bg_threshold = 0.1; std_threshold = 3.5;
minArea = 15; weight_init = 0.05;
variance_init = 10

Noise filtering cvSmooth and blurGaussian

Binary thresholding cvThreshold

Shadow elimination
(erosion and dilation)

cvErode and cvDilate

Blob detection findContours
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foraging trails in various directions, the research ques-
tions could only be answered by studying the insect’s
movement patterns in the field. Furthermore, the subject
ants needed to be selected carefully from different loca-
tions to understand the effect of an ant’s position on the
navigational strategy it chose to employ.

4.2 Experiments and data acquisition
For each trial, a single ant was selected, captured using a
small cylindrical plastic container, and transferred to the
experimental arena. The trial began when the ant was
released in the center of an experimental arena. A full-
HD (1,920 × 1,080 × 24 bits at 30 frames per second)
video camera was used to film the movement of the ant
until it crossed one of the boundaries. The experimental
arena consisted of a rectangular (240 × 140 cm) 8-mm
-thick plywood board, which was positioned at least 13
m away from the colony’s nest. Thus, it constitutes an
unfamiliar ground prompting the ants to attempt to get
back to the trail when released employing various navi-
gational cues. Although the plywood board helped make
ants to be more prominent in the videos, there was still
significant noise resulting from the interference of
shadows, grasses, and other encroaching insects. All in
all, about 400 trials were carried out. Ants were selected
to cover a variety of conditions, including different posi-
tions relative to the trail network (on/off trail), journey
direction (from/to the nest), whether the ant was carry-
ing a food item, and the initial heading direction when
the ant was captured. The location of the camera and
experimental arena was fixed during a single session;
thus, the calibration needs to only be done once for each
session (usually twice in a day).
In addition to the behavioral experiments, we

performed long interrupted observations of the colony’s
main foraging by video recording the movement of for-
agers along a small portion of the trail. This was done to
get a sense of the flow of ants at different times of the
day and to compare the movement patterns of on-trail
and off-trail foragers. Figure 9 shows a screen-grab from
a behavioral experiment (top) and a trail video (bottom).
The density of ants and their fast movement on the trail,
however, made image processing more challenging com-
pared to the behavioral experiments where only a single
individual ant was tracked. We therefore report preci-
sion results for each group separately in the following
section.

4.3 Image processing
The collected videos were processed and analyzed off-
site using the interactive image processing tool de-
scribed in Section 3.2, which was implemented using
openFrameworks and OpenCV. Table 1 lists OpenCV
functions that were used along with their respective
parameters. To process the behavioral experiments, a
human analyst watched the beginning of every experi-
ment and skipped the video to the moment when the
captured ant is released (the recording of experiment
started moments before the release so as to avoid losing
any movement). The user also clicked on the area of re-
lease to center the ROI on it. This centering needs to
only be done once per session. From that point, the pro-
gram automatically tracked the focal ant, stopping only
at ambiguous frames (such as when multiple insects are
in the ROI region) and prompting the user to identify
and click on the focal insect. In many cases, however,
the only interaction required was to skip the beginning
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of videos to the moment of release. Occasionally, in dif-
ficult videos with significant noise, the user needed to
click and correct the program several times. The pro-
cessing of the trail videos proceeded in a similar manner.
However, rather than tracking all ants on the trail, we
opted to obtain few high-quality samples that represent
the typical behavior of foragers along the trail. This was
done by having a human analyst click on a target ant,
with the program performing image processing and
tracking and prompting the user for input when ambigu-
ities occur. We report on the reliability and accuracy of
our human-guided video processing technique and com-
pare it against a fully automated solution in the
following.

4.3.1 Reliability
To measure the reliability of the user’s corrective input
and to quantify the consistency of the results across
multiple users, we had two independent analysts separ-
ately perform human-guided image processing on an
identical subset of the seed harvester ant data compris-
ing 30 behavioral experiments (approximately 8% of the
data). The trajectories obtained by the two analysts were
compared for consistency by measuring their degree of
overlap. The overlap between two trajectories was calcu-
lated by assuming a path width of 3 pixels on either side
of both trajectories and measuring the area covered by
both paths. The area was then normalized by the length
of the longer of the two trajectories to allow for com-
parison across the dataset. The average level of overlap
between the two users was 92.6%, showing a high level
of agreement between the two users. This also demon-
strates the reliability of our human-guided video
processing tool in tracking the focal insects in noisy
field-recorded videos.

4.3.2 Precision
To measure the relative precision of the human-guided
video processing method, we compared user-corrected
trajectories against the ones extracted by a fully auto-
mated algorithm. This was done by running a subset of
the videos twice through our image processing tool:
once with a user supervising and intervening to correct
errors and resolve tracking ambiguities, and a second
time without human guidance, relying solely on the al-
gorithm’s best guess. User-corrected trajectories were
compared against their automatically tracked counter-
parts by measuring the degree of overlap between the
two using the procedure described above (Section 4.3.1).
If the performance of the fully automated algorithm is
comparable to the performance of a human-guided ana-
lysis process, we would expect to see a high degree of
overlap between the two sets of trajectories. If, on the
other hand, the automated algorithm performs poorly,
we would expect to see little overlap between the two.
The level of overlap can be construed as the precision of
the auto-tracked trajectories relative to their user-
corrected counterparts. This allows us to quantify the
gained precision as we move from a fully automated to a
human-guided analysis. Importantly, this method also
penalizes the automated method when it loses track of
the insect and terminates the trajectory early, which nat-
urally reduces the degree of overlap with the human-
guided solution (the user has the ability to click on the
lost insect allowing the algorithm to relocate it). For the
purpose of this comparison, we consider the user-
corrected trajectories to represent the ground truth. Al-
though it is possible for the user to make mistakes, the
reliability analysis in the previous section suggests that
such errors are, in fact, rare. Furthermore, during our
experiments, we found that users were able to accurately
resolve even the most ambiguous of situations by paus-
ing and/or rewinding the video.
We performed the overlap analysis over a subset of

the seed harvester ant videos selected to reflect a wide
range of lighting conditions in the field at different day
times. The test dataset comprised 91 trajectories: 43 vid-
eos of behavioral experiments with a single ant at a time
and 48 video segments of the colony’s foraging trail with
a large number of ants moving at relatively high speeds.
Overall, the fully automated algorithm achieves an aver-
age precision of 80.3% during behavioral experiments
and 55.6% in trail videos, relative to the human-guided
analysis process. This can be construed as an average
gained precision of 19.7% to 44.4% when a user super-
vises the video analysis and takes action to correct track-
ing errors. Figure 10 (left) shows a breakdown of
trajectory overlap levels between the auto-tracked and
user-corrected trajectories. The automated algorithm
achieves over 80% precision in roughly 65% of the be-
havioral experiments, with the precision dropping to
60% to 80% for approximately 14% of the test data. The
bottom 21% of the data had a precision of less than 60%.
The trail videos, on the other hand, suffered a significant
drop in precision in the absence of human guidance
with only 37% of the videos attaining 80% precision,
while 55% of the tested videos had a precision of less
than 60%.
The gap in precision between the behavioral experi-

ments and the trail videos is somewhat expected, as the
trail videos are inherently more difficult to process due
to the large number of ants. The widely varying preci-
sion between the two groups of videos is likely due to
different sources of error. In the behavioral experiments,
the user-corrected trajectories are 18% longer, on aver-
age, compared to the automatically extracted ones. This
suggests that the automated algorithm is often losing
track of the focal insect during the experiment, resulting



Figure 10 Overlap levels between auto-tracked and corrected trajectories and average number of corrective user interventions. (left)
Overlap levels between trajectories obtained using a fully automated and our human-guided video analysis technique. (right) Average number of
corrective user interventions needed during the human-guided video analysis. Error bars represent the standard error. N = 43 behavioral
experiments, N = 48 trail observation video segments.
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in shorter trajectories and ultimately loss of precision. In
the trail observation videos, on the other hand, the auto-
matically extracted trajectories are 29% longer, on aver-
age, than their user-corrected counterparts. Here,
tracking errors are likely to dominate with the algorithm
mistakenly switching to other insects due to the high
density of ants on trails and their fast-paced movement.
This discrepancy is also reflected by the number of times
the user had to intervene, as shown in Figure 10 (right).
On average, the user needed to intervene 5.2 times in
the behavioral experiments, while the trail videos re-
quired an average of 44.4 interventions.
In general, while the fully automated algorithm guar-

antees at least 80% precision in 65% of the behavioral
experiments and 37% of the trail videos, such relatively
low precision levels are likely to confound the analysis.
In some cases, it may be possible to discern unreliable
trajectories and exclude them from the analysis by re-
cording information about the confidence of the video
processing algorithm and discarding trajectories that do
not attain a certain confidence threshold. However, in
many other cases, such as when the tracking algorithm
loses track of the insect, recognizing information loss
may be extremely difficult. Such gaps and errors may
potentially dilute regularities to a point where they be-
come hardly perceptible, particularly in field studies
where the data suffer significantly from higher noise
levels compared to lab-based studies. Human-guided
video processing, on the other hand, can improve preci-
sion by an average of 20% to 44% depending on the
complexity of the video.
4.4 Trajectory analysis
We employed both qualitative (Section 3.4) and quanti-
tative (Section 3.5) analyses to make sense of the col-
lected trajectories and understand the strategies
employed by ants during their off-trail and on-trail for-
aging journeys.
4.4.1 Qualitative analysis
We employed the visualization tool described in Section
3.4. Because of the relatively large number of trails
(about 400), we used of a large 3D display to juxtapose a
large number of trajectories at the same time. Using the
visualization, the user can group trajectories into ‘bins’
according to their associated metadata (such as location
of capture, journey direction, etc.). The bins are given
different background colors to distinguish them.
Figure 11 illustrates the visualization environment.
Using the visualization, we were able to visually con-

firm our initial hypothesis, namely off-trail ants tend to
exhibit a directed motion, exiting the experimental arena
in a direction that would have eventually led them back
to the colony’s foraging trail. For example, ants captured
east of the trail tend to exit the arena from the west side,
which was visually confirmed using the coordinated
paintbrush tool. On the other hand, ants captured on
the trail exhibited tortuous non-directed motion, pre-
sumably in an attempt to pick up pheromone cues and
locate the trail again. We were also able to discover add-
itional temporal patterns, thanks to the stereoscopic 3D
view. For instance, ants that drop their seed during the
capture process tend to spend a significant amount of
time in the center of the experimental arena when re-
leased presumably searching for their seed. This was evi-
dent in the 3D stereoscopic view with trajectories that
were semi-perpendicular to the display surface, indicat-
ing little insect movement over few minutes.
4.4.2 Quantitative analysis
At this stage of the investigation, we wanted to quantita-
tively characterize the difference between off-trail and



Figure 11 Analysis of seed harvester ant trajectories on a large, tiled 3D display. Trajectories were visualized in stereoscopic 3D display to
convey spatial and temporal features. The trajectories were also grouped into bins of different background colors depending on their associated
metadata. In this picture, there are five groups corresponding to ants captured on the main foraging trail (blue background), west (red), east
(yellow), north (gray), and south (green) of the trail. The inset shows a closeup view of the coordinated paintbrush tool (circled) used to highlight
insect movement in the center of the experimental arena.
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on-trail ants, and statistically test our main hypothesis,
namely off-trail ants orient themselves and exit the ex-
perimental arena in a direction that would have led them
back to the colony’s trail.
We calculated the statistical measures described in

Section 3.5. The distribution of turning angles revealed a
marked difference between off-trail and on-trail trajec-
tories. While off-trail ants showed a much narrower dis-
tribution of angles often centered on 0 indicating few
turns, on-trail ants exhibited a much wider distribution
of turning angles, indicating that this group frequently
made relatively large turns. Additionally, the mean
orientation vector showed significant differences be-
tween the two groups (GLM p < 0.001). Off-trail ants
exhibited a mean orientation vector with a 0.78 magni-
tude, on average, often directed toward the trail relative
to their capture position. On-trail ants, on the other
hand, exhibited a shorter mean orientation vector with
an average magnitude of 0.5.
We performed a V test [35] to test our main hypoth-

esis. The test was applied to compare the mean orienta-
tion vectors of groups captured east, west, north, and
south of the foraging trail to a presumed vector oriented
toward the trail relative to the capture point. For ex-
ample, the east group was compared to a vector oriented
at a +90° angle. Results indicate that with the exception
of the ‘south’ group, all other off-trail ants do indeed ori-
ent themselves toward the foraging trail when released
(east: p < 0.001; west: p < 0.001; north: p < 0.001; south:
p = 0.025). On-trail ants, on the other hand, did not
demonstrate significant directional bias. These results
statistically confirm our hypothesis. Furthermore, they
point to a global navigational cue employed by off-trail
ants, perhaps some sort of a sun compass. On-trail ants
seemed lost when removed from the trail, suggesting a
reliance on pheromone cues. When taken together, these
two results strongly suggest a context-dependent naviga-
tion employed by seed harvester ants, depending on
their position relative to the trail network.

4.4.3 Summary
The proposed human-computer collaborative workflow
proved crucial in the various stages of the field study.
Thanks to the increased tracking precision, we were able
to acquire ant movement trajectories at a higher preci-
sion. This increased precision allowed us to quantify
specific behavioral patterns among different groups of
ants even though we had a limited number of condition-
specific samples (about 30 to 50 samples). Using the 3D
stereoscopic visualization, we were able to discover add-
itional spatiotemporal behavioral regularities exhibited
by off-trail ants. Finally, we were able to statistically con-
firm and characterize those behavioral regularities, pro-
viding solid evidence for two distinct navigational
strategies that seed harvester ants seemed to employ in
different contexts.

5. Limitations and future work
There are some technical limitations in the workflow
that need to be addressed before it can be adopted on a
larger scale. At the moment, the workflow was
implemented in separate tools using C++, Java, and
Matlab. In the future, we would like to combine all the
stages into a single application. The integration between
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qualitative and quantitative analyses would be particu-
larly helpful. This would allow researchers to explore the
dataset and visually formulate hypotheses from the
visualization environment with simple interactions, with
the computer translating the qualitative hypotheses into
statistical tests that are performed automatically for
verification.
A second concern is the significant effort a researcher

needs to devote for data acquisition, compared to fully
automated methods. Although human-guided image
processing is well suited for studies relying on behavioral
assays where insects are often manipulated and filmed
individually, such an approach is less efficient in studies
that rely on long passive observation of insect collectives
in the field. While we still believe that a human-
computer collaborative approach is promising even for
observational studies with hours of video recordings, the
role of the human analyst needs to be further restricted.
In the current implementation, the image processing
tool requires a human operator to continuously
supervise and take action to resolve ambiguities and/or
correct tracking errors before processing continues. To
minimize the amount of supervision time, we envision a
backend image processing system that is capable of
automatically analyzing most of the data offline, stop-
ping only at frames that suffer high noise levels and
queuing those up for human intervention at a later time.
The operator would use a frontend tool to quickly scan
through the accumulated frames to visually resolve them
at his/her convenience. The backend system would take
the user input and continue offline processing, queuing
up any additional frames that are difficult to process for
human intervention.

6. Conclusions
The study of insect behavior from image sequences
poses many challenges. Despite the advances in image
processing techniques, the current generation of insect
tracking tools is only effective in controlled lab environ-
ments and under ideal lighting conditions. In this paper,
we presented an end-to-end workflow for the acquisi-
tion, processing, and analysis of the movement trajector-
ies of terrestrial insects in the field. The workflow
employs human-guided video analysis to overcome limi-
tations in automated algorithms when faced with an un-
predictable visual scene and highly dynamic lighting
conditions. Our technique improves tracking precision
by an average of 20% to 44% compared to traditional au-
tomated methods. The workflow also incorporates a
novel trajectory visualization tool for large-scale explora-
tory analysis of insect movement patterns, allowing re-
searchers to visually formulate and test hypotheses
pertaining to insect behavior. Further, we provide a
number of generic statistical analysis methods for the
quantitative analysis of insect behavioral patterns. We
demonstrated the effectiveness of the proposed tech-
niques with a field case study that investigated the navi-
gational strategies employed by Kenyan seed harvester
ants in their native habitat.

Endnote
aAn implementation of the workflow along with the

source code is available at http://www.evl.uic.edu/kreda/
field_entomology/.
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